
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 1. November 2021
Markus Püschel, David Steurer
Gleb Novikov, Tommaso d’Orsi, Ulysse Schaller, Rajai Nasser

Algorithms & Data Structures Exercise sheet 6 HS 21

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

Submission: On Monday, 8. November 2021, hand in your solution to your TA before the exercise class
starts. Exercises that are marked by ∗ are challenge exercises. �ey do not count towards bonus points.

Exercise 6.1 Introduction to dynamic programming (1 point).

Consider the recurrence
F1 = 1

Fn =

(
min
1≤i<n

F 2
i + F 2

n−i

)
mod 3n for n ≥ 2,

where a mod b is the remainder of dividing a by b.

a) Consider the following algorithm that computes F top-down

Algorithm 1 Computing F (n)

function F (n)
if n = 1 then

return 1
else

x← F (1)2 + F (n− 1)2

for i = 2 . . . bn2 c do
x← min(x, F (i)2 + F (n− i)2)

return x mod 3n

Lower bound the running time T (n) of the above algorithm (i.e., give a simple function g(n) such
that T (n) ≥ Ω(g(n))) and show that it has an exponential running time.

Hint: Prove by induction that T (n) ≥ (3/2)n−1.

Solution: Note that for n = 1, T (1) ≥ 1 and for n = 2, T (2) ≥ T (1) + T (1) ≥ 2. For n > 1,

T (n) ≥
n−1∑
i=1

T (i) ,

Let’s prove by induction that T (n) ≥ (3/2)n−1.



• Base Case.
For n = 1, T (n) ≥ 1 = (3/2)n−1, and for n = 2, T (n) ≥ 2 ≥ (3/2)n−1.

• Induction Hypothesis.
Assume that for some k ≥ 2 the property holds all positive integers m ≤ k. �at is, T (m) ≥
(3/2)m−1.

• Inductive Step.
We must show that the property holds for k + 1.

T (k+1) ≥
k∑

i=1

T (i) ≥
k∑

i=1

(3/2)i−1 =
(3/2)k − 1

(3/2)− 1
= 2·(3/2)k−2 ≥ (3/2)k+((3/2)k−2) ≥ (3/2)k ,

where we used the fact that for k ≥ 2, (3/2)k ≥ 2.

b) Improve the running time of the algorithm in (a) using memoization. Provide pseudo code of the
improved algorithm.

Solution:

Algorithm 2 Computing F (n) using memoization
memory← array of size n �lled with (−1)s
function Fmem(n)

if memory[n] 6= −1 then . If F (n) is already computed.
return memory[n]

if n = 1 then
return 1

else
x← Fmem(1)2 + Fmem(n− 1)2

for i = 2 . . . bn2 c do
x← min(x, Fmem(i)2 + Fmem(n− i)2)

memory[n]← x mod 3n
return memory[n]

When calling Fmem(n), each F (i) for 1 ≤ i ≤ n is computed only once and then stored in memory.
�is substantially enhances the running time of the algorithm.
Remark. �e running time of the above memoization algorithm has the same asymptotic growth
as the runtime of the algorithm in c) that uses dynamic programming, namely, Θ(n2).

c) Compute F (n) bo�om-up using dynamic programming and state the running time of your algo-
rithm.

Solution:

Dimensions of the DP table: �e DP table is linear, its size is n.

De�nition of the DP table: DP [i] contains Fi for 1 ≤ i ≤ n.

Calculation of an entry: Initialize DP [1] to 1.

�e entries with n > 1 are computed by

DP [n] =

(
min

1≤i≤bn
2
c
DP [i] ·DP [i] +DP [n− i] ·DP [n− i]

)
mod 3n.

2



Calculation order: We can calculate the entries of DP from smallest to largest.

Reading the solution: All we have to do is read the value at DP [n].

Running time: Each entry DP [i] can be computed in time Θ(i), so the running time is

n∑
i=1

Θ(i) = Θ(n2).

Exercise 6.2 Longest common substring: �nding an invariant (1 point).

Let Σ = {a, b, c, . . . , z} denote the alphabet. Given two strings α = (α1, . . . , αm) ∈ Σm and β =
(β1, . . . , βn) ∈ Σn, we are interested in the length of their longest common substring, which is the lar-
gest integer k such that there are indices i and j with (αi, αi+1, . . . , αi+k−1) = (βj , βj+1, . . . , βj+k−1).
Note that this problem is di�erent from the longest common subsequence problem that you saw in the
lecture. For example, the longest common substring of α = (a, a, b, c, b, a) and β = (a, b, a, b, c, a) is
(a, b, c), which is of length 3.

Below is the pseudo-code of an algorithm that computes the length of the longest common substring
of two strings α ∈ Σm and β ∈ Σn using Θ(mn) elementary operations:

Algorithm 3 LongestCommonSubstring(α, β)

L← 0m×n an m× n matrix of zeros.
for i = 1, . . . ,m do

for j = 1, . . . , n do
if αi = βj then

if i = 1 or j = 1 then
Li,j = 1

else
Li,j = Li−1,j−1 + 1

else
Li,j = 0

// Your invariant from a) must hold here.
return max{Li,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

a) Execute the algorithm on the strings α = (a, b, c) and β = (c, a, b). Write down the value of the
matrix L a�er each pass of the inner for-loop.

Solution: Since α1 = a 6= c = β1, we keep L1,1 = 0 in the �rst iteration, which yields

L =


0 0 0

0 0 0

0 0 0

 .

3



Since α1 = a = β2, we set L1,2 = 1 in the next iteration, which yields

L =


0 1 0

0 0 0

0 0 0

 .

Since α1 = a 6= b = β3, we keep L1,3 = 0 in the next iteration, which yields

L =


0 1 0

0 0 0

0 0 0

 .

Since α2 = b 6= c = β1, we keep L2,1 = 0 in the next iteration, which yields

L =


0 1 0

0 0 0

0 0 0

 .

Since α2 = b 6= a = β2, we keep L2,2 = 0 in the next iteration, which yields

L =


0 1 0

0 0 0

0 0 0

 .

Since α2 = b = β3, we set L2,3 = L1,2 + 1 = 2 in the next iteration, which yields

L =


0 1 0

0 0 2

0 0 0

 .

Since α3 = c = β1, we set L3,1 = 1 in the next iteration, which yields

L =


0 1 0

0 0 2

1 0 0

 .

Since α3 = c 6= a = β2, we keep L3,2 = 0 in the next iteration, which yields

L =


0 1 0

0 0 2

1 0 0

 .

Since α3 = c 6= b = β3, we keep L3,3 = 0 in the next iteration, which yields

L =


0 1 0

0 0 2

1 0 0

 .

�e algorithm then returns max{Li,j : 1 ≤ i ≤ 3, 1 ≤ j ≤ 3} = 2.

4



b) Formulate an invariant INV (i, j) that holds a�er the (i, j)-th iteration of the for loops, i.e., a�er
the computation of Li,j in the pseudo-code.

Hint: Consider the subproblem of �nding the longest common substring that ends at some given indices
of α and β.

Solution: We formulate the following invariant INV (i, j):

A�er the computation of Li,j , for all 1 ≤ i′ ≤ i and all 1 ≤ j′ ≤ j, the value of Li′,j′ is equal to the
length of the longest common substring of α and β that ends at αi′ and βj′ respectively.

c) Prove by induction that INV (i, j) holds for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. Deduce that the
algorithm LongestCommonSubstring is correct.

Hint: You can perform induction over the minimum index k := min(i, j).

Solution:

We prove that INV (i, j) holds for all 1 ≤ i ≤ m and all 1 ≤ j ≤ n by induction on k = min(i, j).

Base case If k = 1 then either i = 1 or j = 1. �e two cases are similar, so without loss of generality
we assume that i = 1. For any 1 ≤ j ≤ n, the length of the longest common substring ending
at α1 and βj is 1 if α1 = βj , and 0 otherwise. �is is exactly the value given to L1,j by the
algorithm in the (1, j)-th pass of the for-loop.

Induction hypothesis Assume, for some 1 ≤ k < min(m,n), that INV (i, j) holds for all 1 ≤
i ≤ m and 1 ≤ j ≤ n with min(i, j) ≤ k.

Note here that Li,j is only computed once. �us, if the invariant INV (i, j) holds at the point
in time when Li,j is computed, it also holds throughout the remaining computation of the
algorithm.

Induction step k → k + 1 Let 1 ≤ i ≤ m and 1 ≤ j ≤ n be such that min(i, j) = k + 1, and
consider some 1 ≤ i′ ≤ i and 1 ≤ j′ ≤ j. �en min(i′, j′) ≤ min(i, j) = k + 1.

If min(i′, j′) ≤ k, then INV (i′, j′) holds by the induction hypothesis, and therefore Li′,j′ is
equal to the length of the longest common substring of α and β that ends at αi′ and βj′ .

If min(i′, j′) = k + 1, then min(i′ − 1, j′ − 1) = k, so again using the induction hypothesis
we know that Li′−1,j′−1 is equal to the length of the longest common substring of α and β
that ends at αi′−1 and βj′−1. If αi′ 6= βj′ , then the longest common substring of α and β that
ends at αi′ and βj′ has length 0, and indeed the algorithm will set Li′,j′ = 0. On the other
hand, if αi′ = βj′ , then the length of the longest common substring of α and β that ends at
αi′ and βj′ is simply 1 plus the length of the longest common substring of α and β that ends
at αi′−1 and βj′−1, i.e. it is 1 + Li′−1,j′−1. �is is exactly the value to which Li′,j′ will be set
by LongestCommonSubstring(α, β).

�is concludes the induction. �erefore, at the end of the execution of LongestCommonSubstring,
INV (m,n) holds. �is means that for all 1 ≤ i ≤ m and all 1 ≤ j ≤ n, the value of Li,j is equal
to the length of the longest common substring of α and β that ends at αi and βj . In particular, the
length of the longest common substring of α and β is max{Li,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, which is
what is returned by LongestCommonSubstring(α, β).

Exercise 6.3 Longest ascending subsequence.

�e longest ascending subsequence problem is concerned with �nding a longest subsequence of a given
array A of length n such that the subsequence is sorted in ascending order. �e subsequence does not

5



have to be contiguous and it may not be unique. For example if A = [1, 5, 4, 2, 8], a longest ascending
subsequence is 1, 5, 8. Other solutions are 1, 4, 8, and 1, 2, 8.

Given is the array:

[19, 3, 7, 1, 4, 15, 18, 16, 14, 6, 5, 10, 12, 19, 13, 17, 20, 8, 14, 11]

Use the dynamic programming algorithm from section 3.2. of the script to �nd the length of a lon-
gest ascending subsequence and the subsequence itself. Provide the intermediate steps, i.e., DP-table
updates, of your computation.

Solution: �e solution is given by a one-dimensional DP table that we update in each round. A�er
round i, the entry DP [j] contains the smallest possible endvalue for an ascending sequence of length
j that only uses the �rst i entries of the array. In each round, we need to update exactly one entry. If
there is no ascending sequence of length j, we mark it by “-” . In order to visualise the algorithm, we
display the table a�er each round. Note that the algorithm does not create a new array in each round,
it just updates the single value that changes

length 1 2 3 4 5 6 7 8 9
round 1 19 - - - - - - - -
round 2 3 - - - - - - - -
round 3 3 7 - - - - - - -
round 4 1 7 - - - - - - -
round 5 1 4 - - - - - - -
round 6 1 4 15 - - - - - -
round 7 1 4 15 18 - - - - -
round 8 1 4 15 16 - - - - -
round 9 1 4 14 16 - - - - -
round 10 1 4 6 16 - - - - -
round 11 1 4 5 16 - - - - -
round 12 1 4 5 10 - - - - -
round 13 1 4 5 10 12 - - - -
round 14 1 4 5 10 12 19 - - -
round 15 1 4 5 10 12 13 - - -
round 16 1 4 5 10 12 13 17 - -
round 17 1 4 5 10 12 13 17 20 -
round 18 1 4 5 8 12 13 17 20 -
round 19 1 4 5 8 12 13 14 20 -
round 20 1 4 5 8 11 13 14 20 -

�e longest subsequence has length 8, since this is the largest length for which there is an entry in the
table a�er the �nal round. To obtain the subsequence itself, we work backwards: �e last entry is 20. To
get the second-to-last value, we check out the le� neighbour of 20 in the round in which 20 was entered
(round 17), which is 17. �en we go the le� neighbour of 17 in the round in which it entered the table
(round 16), and obtain 13. Continuing in this fashion, we obtain the sequence 1, 4, 5, 10, 12, 13, 17, 20.

6



Exercise 6.4 Longest common subsequence.

Given are two arrays, A of length n, and B of length m, we want to �nd the their longest common
subsequence and its length. �e subsequence does not have to be contiguous. For example, if A =
[1, 8, 5, 2, 3, 4] and B = [8, 2, 5, 1, 9, 3], a longest common subsequence is 8, 5, 3 and its length is 3.
Notice that 8, 2, 3 is another longest common subsequence.

Given are the two arrays:
A = [7, 6, 3, 2, 8, 4, 5, 1]

and
B = [3, 9, 10, 8, 7, 1, 2, 6, 4, 5],

Use the dynamic programming algorithm from Section 3.3 of the script to �nd the length of a longest
common subsequence and the subsequence itself. Show all necessary tables and information you used
to obtain the solution.

Solution: As described in the lecture, DP [i, j] denotes the size of the longest common subsequence
between the strings A[1 . . . i] and B[1 . . . j]. Note that we assume that A has indices between 1 and 8,
so A[1 . . . 0] is empty, and similarly for B. �en we get the following DP-table:

0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1 1 1 1 1
2 0 0 0 0 0 1 1 1 2 2 2
3 0 1 1 1 1 1 1 1 2 2 2
4 0 1 1 1 1 1 1 2 2 2 2
5 0 1 1 1 2 2 2 2 2 2 2
6 0 1 1 1 2 2 2 2 2 3 3
7 0 1 1 1 2 2 2 2 2 3 4
8 0 1 1 1 2 2 3 3 3 3 4

To �nd some longest common subsequence, we create an array S of lengthDP [n,m] and then we start
moving from cell (n,m) of the DP table in the following way:

If we are in cell (i, j) and DP [i− 1, j] = DP [i, j], we move to DP [i− 1, j].

Otherwise, if DP [i, j − 1] = DP [i, j], we move to DP [i, j − 1].

Otherwise, by de�nition of DP table, DP [i− 1, j − 1] = DP [i, j]− 1 and A[i] = B[j], so we assign
S[DP [i, j]]← A[i] and then we move to DP [i− 1, j − 1].

We stop when i = 0 or j = 0.

Using this procedure we �nd the following longest common subsequence: S = [7, 6, 4, 5].

Exercise 6.5 Optimizing Starduck’s pro�t (1 point).

�e co�eeshop chain Starduck’s is planning to open several cafés in Bahnhofstrasse Zürich. �ere are
n possible locations 1, . . . , n for their shops on Bahnhofstrasse, ordered by their distance to Zürich
main station m1 < . . . < mn. Opening a shop at location i would yield Starduck’s a pro�t of pi > 0.

7



However, they are not allowed to open cafés that are too close to each other, namely any two cafés
should have distance at least d from each other, for some given value d > 0.

a) Provide an algorithm using dynamic programming that computes the maximum total pro�t that
Starduck’s can make on Bahnhofstrasse. In order to get full points, your algorithm should have
O(n log n) runtime.

Hint: Consider the subproblem of �nding the maximum total pro�t that Starduck’s can make if only
locations 1, . . . , i are available

Solution:

Dimensions of the DP table:

�e DP table is linear and contains entries from DP [0] to DP [n], its size is n+ 1.

De�nition of the DP table:

DP [i] contains the maximum total pro�t that Starduck’s can make using only the locations 1, . . . , i
(taking the distance restriction into account).

Calculation of an entry:

Initialize DP [0] = 0.

Let i ≥ 1 and denote by j(i) the largest index j such that mj ≤ mi − d (and j(i) = 0 if there is no
such index). �en DP [i] is computed by

DP [i] = max{DP [i− 1], pi +DP [j(i)]}. (1)

Let us show the correctness of this formula. �e optimal opening strategy of Starduck’s using only
the locations 1, . . . , i either opens a café at location i or does not. If it does not, then clearly the
strategy is the same as the optimal startegy using only the locations 1, . . . , i − 1, whose pro�t is
DP [i− 1]. If it does open a café at location i, then it is not allowed to open cafés at any location j
with mj + d > mi because of the distance restriction. Since the mj ’s are in inreasing order (m1 <
. . . < mn), this means that one cannot open cafés at any of the locations j(i)+1, j(i)+2, . . . , i−1.
In the (potentially empty) set of remaining locations, namely all locations up to j(i), one should
clearly apply the optimal strategy that yieldsDP [j(i)] pro�t, so overall this strategy will yield total
pro�t pi + DP [j(i)]. �e maximum total pro�t that can be made using locations 1, . . . , i is then
the maximum between these two possibilities (DP [i − 1] if no café is opened at locations i, and
pi +DP [j(i)] if a café is opened at location i), which proves formula (1).

Calculation order: We compute the entries from le� to right (i.e. from 0 to n).

Reading the solution: �e maximum total pro�t is simply DP [n].

Running time: In order to compute DP [i], we �rst need to �nd out the value of j(i). �is can be
done in time dlog2 ie = O(log n) using binary search. �erefore, the computation of an entry takes
O(log n) time, and since there are n+ 1 entries the total running time is O(n log n).

b)* You now would like to recover not only the maximum total pro�t, but the corresponding locations
where shops should be opened in order to achieve this pro�t. How can you get this out of your DP
table in time O(n) ?
Remark. �ere might be multiple optimal opening strategies, and it is enough if you can recover
just one of them from the DP table.

Solution:

8



We obtain an optimal strategy by backtracking. More precisely, remembering the way we built our
DP table and justi�ed the correctness of this construction, we know that ifDP [i] andDP [i−1] are
di�erent, then the optimal strategy restricted to locations 1, . . . , i actually opens a café at location
i.

Let us initialize an empty list L. We start from the right of the DP table (namely at index i = n)
and decrease index i gradually (i.e. to n − 1, then n − 2 and so on) until we �nd the �rst index i1
for which the DP-value changes (i.e. i1 is the largest index such that DP [i1] 6= DP [i1 − 1]). Since
by de�nition DP [i1] = DP [n], we deduce that the optimal strategy opens a café at location i1,
so we add i1 to the list L . Moreover since DP [i1] 6= DP [i1 − 1], by equation (1) we know that
DP [i1] = pi1 +DP [j(i1)]. We continue decreasing our index i gradually until we �nd some index j
withmj ≤ mi1−d, namely until we �nd j(i1). We then continue to decrease i to j(i1)−1, j(i1)−2
and so on until we �nd the �rst index i2 for which the DP-value decreases, i.e.DP [i2] 6= DP [i2−1].
Again, since DP [i2] = DP [j(i1)], this location i2 must be part of the optimal strategy restricted
to locations 1, . . . , j(i1), and therefore of the total optimal strategy since DP [n] = DP [i1] =
pi1 + DP [j(i1)], so we add i2 to the list L. Again, we continue decreasing the index until we �nd
j(i2), and then �nd the �rst index smaller or equal to j(i2) for which the DP-value decreases, and
continue this until we reach the index i = 0.

Here the pseudo-code of the described procedure. It returns the list of locations where a café should
be opened to yield maximum pro�t.

Algorithm 4 Backtrack(DP )

L← []
i← n− 1
OPT ← DP [n]
while i ≥ 0 do

if DP [i] < OPT then
Add i+ 1 to L
m← mi+1 − d
whilemi > m do

i← i− 1

OPT ← DP [i]

i← i− 1
return L

Note that this runs in time O(n), since for each decreasing of i we perform a constant number of
operations, and i is decreased exatcly n times (from n− 1 to −1).

9


